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Homomonotone Games and Solutions

by

A. Charnes, S. Duffuaa, B. Golany

Abstract

A new solution concept, the Monocore, for superadditive n-person

cooperative games is introduced. Based on the notion of strong-superadditivity

-. or "homomonotonicity", it transforms any superadditive game into a non-empty

core game and then finds a unique imputation in the core of the transformed

* game. The Monocore is applied to games in characteristic function form

and in homomollifier form and a way of comparison is suggested. A general

class of Monocore solutions is described and related to some aspects of

* Information Theory.
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1. Introduction

In a recent paper, [1], we considered deficiencies and advantages

connected with the solution concept of the core for n-person superadditive

games. There, we suggested the "homocore" as a new solution concept, based

on the homomollifier notion (see also [2]) and the core idea of stability.

The homocore is the product of a process which generates an empty core

extension from any superadditive really essential game. In the extension

the value of the grand coalition is raised, so that all the inequalities in

the core system can be satisfied. The homocore is obtained as a unique

imputation based on average values for each player from coalitions in which

he participates and at a level which is last to be satisfied in the above

system.

Here we approach the problem of defining a core-like solution from a

somewhat different direction. We start by defining a per-person super-

additivity property which we call " homomonotonicity." The usual super-

additivity property guarantees to any two disjoint coalitions S and T that

they can acquire at least as much by forming the larger coalition S U T as

by remaining separated. The usual superadditivity property might still

allow a situation in which the average payoff to players in S or T is re-

4duced in the joint coalition. This cannot happen in a "homomonotone" game

in which the much stronger property of per-person superadditivity holds.

* Some interesting consequences of homomonotonicity are that it implies:

(i) usual superadditivity, (ii) a non-empty core. Homomonotonicity thus

.4'
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is a desirable outcome of a game mapping which would put us in an opposite

position to that attained in [ 1 1, where we had a transformation which mapped

any game into an empty core homomollifier. Here, in section 3, we define a

transformation which will map any game into a homomonotone game.

Based on the fact that the transformed game has a non-empty core, we

define a process which yields a new solution notion for an n-person game

which we name "Monocore." This solution is a unique imputation obtained by

considering only the two last levels of inequalities in the system which

determines the core. This is possible since we prove that it is always

the (n-)th level in the transformed game which is critical in determining

The core. We suggest two ways to reach the Monocore solution--via construction

or through solving a quadratic programming problem. We also compare the

monocore over the original game (N,v) to the monocore derived over the homo-

mollifier (N,w) of the game. In section 5, we define a generalized monocore

solution starting with any of a class of specifications of the personal contribu-

tion of each player to the grand coalition.

2. Properties of Homomonotonicity

Let (N,v ) be a game in characteristic function form where N =1,2,...

is the set of players and v is a non-negative real valued function defined on

all the subsets of N with v(0) = 0, x= (x1, x2, ... , xn) be a payoff vector,

S any subset of N with s the cardinality of S. By x(S) we mean .x i.

The complement of the game, denoted by v, is defined by 7(S) = v(N) - v(N - S)
0v-s) + n-svS.Agaei

and the homomollifier W is given by: w(S) = v(S) + v(S). A game is

called "superadditive" if for all S, TCN with S(ThT = 0 , v(S) + v(T)s (SUT).

S.1
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Definition I: A game is "homomonotone" if for every S, T such that S !T,V v(S) 5v (T)

S t

-. If each player in a coalition S is sure to receive the average of the

coalition worth v(S), it is clearly to his advantage to join as large a

coalition as possible in a homomonotone game. Thus with respect to ex-

pectation of equal distribution of coalitional worth the grand coalition is

the coalition most likely to form in a homomonotone game.

Theorem 2.1: A homomonotone game is superadditive.

Proof: considerany, S1 , s 2__N with Sl (- S2 = . Let T = S S2 .

Then by homomonotonicity we have

v(S1) < v(T) v(S2) < v(T)

SI t , s2  t

or

v(Sl )  s v(T) v(S2 ) s2 v(T)

Sl+S 
2

Adding the inequalities, v(S ) + v(S2 )  5 - -v(T) =v(T).

Hence the game is superadditive.

Q.E.D.

Theorem 2.2: Every subgame of a homomonotone game is homomonotone.

Proof: Consider the subgame (T,w) defined by the coalition T CN and all

subsets of T with characteristic function values for T and its subsets

precisely those of the original game.

Consider any pair of subsets S1 c S2 q T.

..d .. . • . . . . . •
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Then w(SI) V(S1 ) _ v(S2) w(S2)

S S s2 - 2

So (T, w) is a homomonotone game.

Q.E.D.

Theorem 2.3:

A non-negative homomonotone game has a non-empty core.

Proof: By the homomonotonicity property,

v(S) I v S c, N
s n

If v(N) = 0 then so is v(S), V S 9_N. Thus xi = 0, i = 1,...n

satisfies the core properties. If some v(S) >O,then by the homonotonicity

v(N) > 0.

Since v(i) vN) Vi EN choose x. - v(N)
n 'n

Then X(S) f xi = s v(N) _ v(S) by homomonotonicity for all SC N.

n

Also X(N) = xi  = n -1 v(N) = v(N)

Hence xT  1 vCN),...,-1 v(N) ) is in the core.
= n nN.

Q.E.D.

Remark 2.1: Although it might be tempting to think that homomonotonicity

implies convexity of the game (since any convex game has a core), this

is not true, e.g. the following is a homomonotone game which is not convex:

_ v(1) = 1 , v(2) = v(3) = 1

v(12) = 3 v(23) 4 v(13) 4

v(123) = 6

,
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The game is homomonotone since

3 v3) v(12) v(23) v(123)
v 1 2  2v 2 2 3

.4/

.,t .
v(13 v(3< v(123) v(12 v(123) v(3 v(123)

3 2 3 '3 ' 3 3

2 3

But it is not convex: v(12) + v(23) = 3 + 4 = 7 >v(123) + v(2) =6

contradicting v(S1) + v(S2)- v(SlUS2) + v(SlS 2) , V S1, 2 q N,
1J

the convexity property.

4 Remark 2.2: It might be thought that with the strong increase in

sizes of v(S) with the homomonotonicity property, any homomonotone game

would be essential. However, this is also not true, e.g. the game

v(S) = s defines a homomonotone inessential game.

So far we have discussed some of the properties of a homomonotone

game and now we turn to a process, "homo-transformation," which maps any

game into a homomonotone game.

Definition 2: The homo-transform (N~v') of (N,v) is given by

4!

IV'(S) = v(S) , V SeN.

Theorem 2.4: The homo-transform (N,v') of a superadditive game (N,v)

I is homomonotone.

Proof: Since (N,v) is a non-negative superadditive game, v(S) < v(T), I SCTCN.
Hence §.v(S) < t v(T)

n s n t
By definition 2 we get v'(S) 5 v(T) , I STN

S t
i.e. (N,v') is homomonotone,

%Q.E.D.
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3. The Monocore Solution

The transformation in 2.4 guarantees the existence of the core,

but still we are left with the non-uniqueness of the core. The following

construction will always select a unique member of the core set.

The system of inequalities which determine the core (of the trans-

" formed game v') is

x ;0 vi
x v2  Ist level

2 2

xn )v n

x x+x ~v
1+2  1,2

(1) : 2nd level

x +x )
n-i n n-l,n

x1+X 2+ ...... +Xn-2 . V,2,3,...,n-2

•+i". n-2th level
X3 3+x 4 ...... +n-1 + Xn 'v 3,4,...,n

X +2+... ...+Xn- 1  > V,2,3,...,n-1

n-Ith level
x2+x3 + . ... .. x+x x > V2

2 3 n-1 +n 23,.. n

x I +x2+ ...... + x = v(N) nth level.

-.0

From theorem 2.3 we know that this game has a non-empty core, i.e., this

system of inequalities is consistent.

The next lemma shows that in our case, we need to consider just one

level out of the n levels above.

0. .-
9.
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Lemma: The critical level for (N,v') is the (n-l)th level.

Proof: Let Ti be the n-i player set omitting player i and Si be the jth

set of k members omitting player i.

Then

T , j = 1,.

Note that in this notation each set S of k members has n-i designations of

form S! as may be seen from the incidence matrix of players in k member sets.

By homomonotonicity,

(nl (ni) V

Hence Wk v(i 1 v(S.)n-i k ""

and n v(Ti) i . (v(S )

Sn-1 k

i js=k

Thus t v(T) n-k n v(S)n-l tn- k(n k ) s=k

n-k 1=',S n-k 1 nv(S)and n-1 -E Av(T)( (n1 k (n=

since nn1 (n-k)

Thus,

v (T) Fv(S)"n t=n-1 ()s=k

Q.E.D.
Hec. to

*1*ka, , ']T

Q..D
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Now suppose we change all the inequalities in the (n-l)th level to

equalities and solve the sub-system which consists of the last n+1 equations

in (1).

We know by theorem 2.3 and the previous lemma that our system has many

inputations in the core. We attain the monocore by the following process:

.- n-i

(i) Let R(i) = v'(N) - v'(N-i) = v(N) -I v(N-i).
n

Then n n

(ii) ER(i) = nV(N) -I F, v(N-i) = nV(N) - (n-1)A
. i=1 n i=1

n

where A - v(N-i) is the average value for characteri
n i=I

functions in the (n-l)th level.

n

It is clear that both R(i) > 0 and (i) v(N) hold.
i=1

(iii) Since we need x(N) = v(N) for x to be an imputation, we should

scale R(i) "downward" by v(N)/(nv(N) - (n-l)A).

Hence, we define the monocore as:

[v(N) - 1 v(N-i)] v(N)
(2) x(i) - nv(N) - (n-l)A

• Theorem 3.1: The monocore of any superadditive (N,v) game always exists, is

unique, and is an imputation in the core of the transformed game (N,v').

NOW Proof: The existence and uniqueness properties are trivially given by the

construction of x(i) above.

JP
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For x to be an imputation in the core, we need to prove that

x(S) __ v S), V SCN and x(N) = v'(N). By the lemma above, we need to

consider only ISI = n-1. Also x(N) = v'N) by construction. So we have only

to prove that:

n

'x(j) >_ v'(N-i) , V i=l,...,n
j=1
j#i

Add x(i) to both sides:

- n-l v(N-i) + [v(N -ln v(N-i)]v(N)v (N ) n i + I V( ) nT N

where v"(N) is the denominator in (2).

By the construction, v(N) 1, so

n-1 Fv(N n-N__
nv(N-i) + IV(N) -ln v(N-i) .. T <v(N).

Q.E.D.

Next, we notice that x(i) can be written as:

v(N) - n-- v(N-i)
(3) x(i) = Piv(N) where Pi nv(N) - n-l)A

n

and 1.

Recall theorem 2.3 where we used the imputation x(i) v(N). We are

now back in a situation where x(i) is expressed as a proportion of v(N).

Theorem 3.2: The proportion pi is greater (smaller) than the "uniform"

proportion p. = V , i, only if v(N-i) <A (v(N-i) > A).1 n
Proof: Suppose v(N-i) -A. Then:

v(N) - v(N-i) v(N) - A.v( n __n 1
Pi= nv(N n- - nv(NT- (n'l) > - as asserted.

Similarly, the v(N-i) A proposition is demonstrated.
Q.E.D.
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Our purpose in introducing the proportions pi in (3) becomes clearer by

the next theorem. Here we wish to interpret the monocore solution concept as

an optimal solution to a certain extremal principle.

Theorem 3.3: For p. given as in (3), the monocore is the solution to the

following quadratic programing problem.

n

Min1 1 x2
2 i i

s.t.n
FIX = v(N).
i=11

* Proof: Differentiating the Lagrangean, z, and setting it equal to zero,

.Zaz 1
~ = ~x. 0. Hence x. X

=z ~x. v(N) =0

Hence A=v(N)/.r p.
1

which implies x.= v(N) pi piv(N).
1 Ip. i

Q.E.D.

To see what the monocore is for games without a core, with a unique

core, and with many imputations in the core, consider the following examples.

Example 3.1: An empty core game
_ _ -4

v(1) = v(2) = v(3) = 0 , v(12) =v(123) =1 ,V(13) ,v(23) .66

Now A= -S vS) - So nv(N) -l) 8
ISI=2
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Hence the monocore is: x(1) = 1 - . 5/12

x(2) 2 1 4/12

3 6 8/6

x(3) = 1 1 = 3/12

Example 3.2: A game with unique core (BL

v(1) = v(2) = v(3) = v(23) = 0 ; v(12) v(13) v(123) 1.

A =.- and nv(N) - (n-1)A = The monocore turns out to be
3' 3*

3(1 ,~ 1(2 _ 3 1- .
x(1) x = , x(3)

This happens to be the "disruption" solution in [21, but this solution

property does not hold in general.

Example 3.3: A game with an infinite number of imputations in the core

1v(1) = v(2) = v(3) =0 ; v(12) = v(123) = 1 ; v(13) v(23) 0

A = and nv(N) - (n-1)A = 2. The monocore is

1 1 1x(1) = , x(2) ,x(3) =6

4. The fonocore of the Homomollifier

We suggested in [1) that the homomollifier for each game represents the

conclusion of an implicit bargaining process. We now apply the nionocore

solution concept to the homomollifier. The steps for doing this are

4 as follows:

(1) Find the homomollifier w(S) for the given game.

(2) Apply the homo-transform defined in 2.4 to get w'(S).

(3) Use the construction or the extremal principle to get the monocore

solution to the game w(S).

* p. p - ) * ,,,'.r-',. p.J..'...,.V/.-..'.. S.,. .- " .. '.';' ,. ''. -.-. ,-'..-.- -'-.," ..."-" - -.
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The next theorem will show the relation between the monocore of the

homomollifier and the monocore of the original game (N,v).

First, we define a measure of inequality in the distribution of payoffs

as follows:

n2
~ v( N-

(4) M n x(i)]i=1Ln;

Clearly, for the "uniform" imputation used in theorem 2.3, this measure

is zero. More generally, for any solution concept this measure describes

the amount of dispersion in payoffs of the group players.

Theorem 4.1: The dispersion measure M is always smaller for the monocore

of the homomollifier game (N,w) than for the monocore of the original
S'

game (N,v).

Proof: W.l.o.g. we will prove the theorem for games in 0-1 normalization,

since any superadditive qame in characteristic function form is strategically

equivalent to such a game. Let Mv , Mw be the respective measures for (N,v)

and (N,w). Then

n 2 -v1_ 2

F vN N__ v(N) v_____________
= .n v n v(N)--v N A-

n 2 :
(n-1) 2v2 (N) v(N-i) - A 2

n4  i=1 v(N) - A

n

Similarly Mw (n-1) v(N (N-i) - where A= E w(N-i) "

n i=1 - ni=1

,u

4 + -' m" ' "- - + + : } + ' " '. +" ' + + . , -r " '' +" , L ' " "+ U :" -_ " ' " '
.1, .I L ,+
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Now w(N-i) 9 n-1 (v(N)-v(i)) + v(N-i) v(N-i) + v(i) -v(N) + v(N)
n nn'

n n
and A w(N-i) A + a - v(N) + v(N) where a = dL.v(i). .Sn i=1

Hence, ".

[w(N-i) - = li{v(N-i) - A) + (v(i)- a)]2.
n

Further, the denominator of MW is given by

v(N) n-lA: I Ev(N) - n [A+ a- v(N)]] = L [(2n-1)v(N)- (n-1)(A+a)].

In the 0-1 normalization, v(i) = 0, V i , hence a = 0. Thus we have for the

ith term in Mw
V - - I A 4]

vN-i -(2n-l)v(N) (n'I) I

To complete the proof we only need to show that

(2n-1)v(N) - (n-1)A v(N) - n-A which is easy to see by collectingn '

terms.
Q.E.D.

Let us now compare the monocore solutions for the homomollifiers of our

examples 3.1 to 3.3:
S

Example 4.1: The game (N,v) is as in 3.1. The homomollifier is

w(12) =1 ,w(13) 17 w(23) =16 , w(123) = 1. Then A- 17 and the18 1 18
ip

monocore is: - 23"[. '/ 1] 1X( 1) S 21871 11

2 171
2 318 1 10
2 171 Y W

q * "~ ~ 1 -:'J -, .~ % %''%
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3 318 1 9
x (3) [ F318] S

Here M w 2w = 0.0022 while Mv = 2f -- 0.0138. Clearly, the monocore over

w..900... 144

the homomollifier has a much more uniform distribution of payoffs.

Example 4.2: The game (N,v) is as in 3.2. The homomollifier is

w(12) =w(13) =w(123) = 1 ,w(23) -2 Then ~*-8 ,and the monocore
3 9~

is: [1 2 11

-3 3"115
2 8

[(2 3 1~ 9

91

x(3) 9

Here M = 0.0220 while Nv = 0.1066.

Example 4.3: The game is that of 3.3. The homomollifier is w(12) 1,

w(13) w(23) w(123) = 1. Then A == and the monocore is:
666

6 1 1

S . s -6 1 58

x(1) =[ _ -

2 5. S 2

'4 .5%

1-.2 1 

%-.x(3) = 2 8 - 3

-1 x(3) =

-- Again M w = 0.0138 < M= 0.055.

w(3)= . .= (2)=1 Then*J A'= .. and the moocr is:.& .'
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5. A Class of Monocore Solutions

In this section, we define another simple extremal principle which

yields as a special case the monocore solution of the previous section. We

use the well-known notion of Minimum Discrimination Information (see e.g. [3],

[4]).

Let z. be any strictly positive measure of the ith player's contribution
1

to the grand coalition. A "generalized" monocore is then the solution to the

following non-linear (goal) programming problem with the z i as goals:

n
x..

Min c = l. in

* (5)
s.t. n

%. i= v(N)
i=11

Still more generally, we may impose additional constraints.

Lemma: The explicit solution to (5) is xi - v(N).

1 
f

Proof: Differentiating the Lagrangean, C, of (5) and setting it to zero,

A , ,

(6) ac in- + x+ = 0
ax i  z i Xi z i

A n
' (7) ac - ..xi  - v(N) = 0

n n

From (6), we get xi = e 1+i ) and x = e +X)z
i=1 i=1 1

O. zi
Using (7), we conclude xi = - v(N).

Q.E.D.

A -,
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Remark 5.1: Notice that if we choose z. : v(N) v(N-i) as a measure of
- fn

the ith player's contribution to the grand coalition, the generalized monocore

is the monocore of our construction in §3.

Remark 5.2: 'If instead we choose

S- k-i ,w(S) where k is such thatz= n-i(S)w(k-
ISk ISI=k

max 1 "w(S) E w(S)'. Sl<n nI~-1I IS, (n-1) ISk

the generalized monocore is precisely the homocore of [1].

6. Conclusion

A new unique core-like concept of solution for n-person games is

defined based on a new property called the homomonotonicity. This

solution is called the monocore and it is based on a simple game mapping

which will map any n-person superadditive game into a homomonotone game.

4 Every homomonotone game has a non-empty core.

This solution concept conforms to the idea that the homomollifier

represents an implicit bargaining process. Also this concept of solution

is characterized by an extremal principle from which a generalized

monocore solution is proposed.

Further research will study different transformations of games

to attain homomonotone games and their effect on this concept of solution.

p.

p , - ~.~-p* -- *.-*.p* ~ ~ -* ~ . ~ *~,~f%\.*p*~p
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